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ABSTRACT 
Mobile health applications for weight maintenance ofer self-monitoring 
as a tool to empower users to achieve health goals (e.g., losing 
weight); yet maintaining consistent self-monitoring over time proves 
challenging for users. These apps use push notifcations to help 
increase users’ app engagement and reduce long-term attrition, 
but they are often ignored by users due to appearing at inoppor-
tune moments. Therefore, we analyzed whether delivering push 
notifcations based on time alone or also considering user context 
(e.g., current activity) afected users’ engagement in a weight main-
tenance app, in a 4-week in-the-wild study with 30 participants. 
We found no diference in participants’ overall (across the day) 
self-monitoring frequency between the two conditions, but in the 
context-based condition, participants responded faster and more 
frequently to notifcations, and logged their data more timely (as 
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eating/exercising occurs). Our work informs the design of notif-
cations in weight maintenance apps to improve their efcacy in 
promoting self-monitoring. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; 
Smartphones; Empirical studies in ubiquitous and mobile computing; 
• Applied computing → Consumer health. 
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1 INTRODUCTION 
Mobile health (mHealth) applications (apps) can promote behav-
ioral changes toward healthier habits by assisting in users’ self-
monitoring process. Prior work has demonstrated that a system 
that facilitates users’ self-monitoring and provides feedback can 
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efectively increase physical activity [64] and motivate healthy eat-
ing [21]. Therefore, self-logging is a critical component of many 
well-being systems. Encouraging users to log personalized health 
data (e.g., food and exercise) not only aids in their process of achiev-
ing health behavior change, as described above, but also allows the 
system to provide tailored feedback and health services. However, 
self-logging is often difcult to sustain at regular intervals over 
many weeks [10, 11]. 

To address this challenge, we revisited behavior change theories 
and turned to the Fogg Behavior Model [28], which highlights 
the role of triggers in boosting engagement and adherence. Prior 
work has shown that mHealth app notifcations increase users’ app 
engagement [67], adherence to health goals [35], and long-term 
retention [79]. For instance, Bentley and Tollmar [6] found that 
including mHealth app notifcations increased users’ logging of 
dietary intake data from 12% to 63%. However, prior work has also 
shown that mHealth notifcations are often ignored by users, either 
due to appearing at inopportune moments [16, 27, 57] or leading 
to habituation (i.e., decreased response to repeated stimulation) 
over time [5, 38, 83]. To design efective notifcations, extensive 
research has studied when to ideally interrupt users, but mainly in 
areas other than mHealth. These previous studies have shown that 
sending notifcations based on contextual factors, such as location, 
time, and task engagement level, reduces perceived disruption, 
decreases response time, and increases click rate [27, 59, 74, 76, 84]. 

To increase mHealth app engagement for promoting health be-
havior change, prior work explored using context-based notifcation 
systems to reach users when they are at a high level of receptivity 
[22, 50, 67, 68]. Nonetheless, the results of these eforts have pro-
duced a mixture of conclusions, contributing to a landscape of both 
successes and ambiguities. Although some studies have demon-
strated the efcacy of contextual factors in enhancing notifcation 
efectiveness and user engagement [36, 50], other investigations 
have not yielded statistically signifcant results in support of the 
same concept [40]. For example, Horsch et al. [40] found no efect of 
notifcation type (context-based vs. time-based reminders) on user 
engagement of a sleep diary app over a one-week study. Overall, it is 
unclear if sending mHealth notifcations based on contextual factors 
adds additional beneft, especially long-term. Therefore, we focus 
on investigating how the timing of notifcations (context-based vs. 
time-based) infuences logging frequency and time required for 
users to respond to notifcations. 

Contextual factors, such as time of day, have been found to be 
efective in estimating user interruptibility. Prior work also found 
that ideal moments for interruption occur at transitions between 
diferent physical activities, mainly because that moment repre-
sents when a self-initiated task interruption occurs [44, 70, 71]. 
Therefore, we selected time of day and physical activity transitions 
as our contextual factors for sending context-based notifcations. 
We designed a within-subjects study employing notifcation tim-
ing as the independent variable with two conditions: time-based 
notifcations and context-based notifcations. In the time-based con-
dition, our app sends notifcations based only on the user’s fxed 
time preferences, whereas in the context-based condition, the app 
sends notifcations based on both the user’s time preferences and 
their physical activity transitions. To simulate a real-world use case, 
we selected weight maintenance as a health goal for participants 

to focus on. Informed by our team of health experts, we selected 
weights, dietary intake (lunch and dinner), physical activities, and 
self-rated measures of weight-related variables (e.g., hunger) as 
self-monitoring data points. 

To investigate our research question, we developed an instru-
mented companion app with custom functionality to pair with Fat-
Secret [23], a commercially popular weight management app that 
ofers an API [24], logging interfaces, and comprehensive databases 
for tracking weight-related data. We conducted an in-the-wild study 
with 30 participants recruited from our local community or cities 
within the same time zone over 4 weeks. We counterbalanced the 
order efect by dividing 15 participants into a context-frst group 
and the remaining 15 into a time-frst group. Our results showed 
that while the average overall log rate was greater in the context-
based condition (58.87%) than in the time-based condition (55.54%), 
there was no signifcant efect of notifcation timing on the over-
all log rate. This suggests that contextual notifcations did not 
necessarily trigger more daily self-monitoring behavior. However, 
we found a signifcant efect of notifcation timing on notifcation 
click response time, click rate, and completion rate. Participants (1) 
clicked on notifcations faster (12.33 minutes vs. 18.42 minutes), (2) 
clicked on notifcations more frequently (19.05% vs. 13.96%), and 
(3) logged more health data (21.77% vs. 17.32%) within 60 minutes 
after the notifcation was sent in the context-based condition than 
in the time-based condition. Our results suggest that context-based 
notifcations were efective in triggering more timely responses 
to notifcations and more timely self-monitoring behaviors. Addi-
tionally, insights gathered from interviews highlighted individual 
diferences in behavioral preferences that introduced variability 
into our overall self-monitoring behavior measure. 

The contributions of our paper are: 
• integration of insights from interruptibility literature into 
an mHealth context, using an app that was designed with 
health experts’ guidance, 

• a month-long in-the-wild study in which participants used 
our app in their daily lives deployed on their own devices, 

• a deeper understanding of how using contextual cues for 
sending notifcations can trigger more timely self-monitoring 
behaviors, 

• a set of implications for future research on fnding the right 
balance between real-world individual diferences and opti-
mal health-related guidelines, and 

• a discussion of how our results are informative for future 
design of mHealth apps. 

2 RELATED WORK 
We focus our review of relevant prior work on four major categories: 
(1) reasons for using mHealth apps to support health behavior 
change, (2) health intervention strategies leveraging mobile devices, 
(3) context-based notifcations in mHealth apps, and (4) opportune 
moments to interrupt users and send notifcations. 

2.1 Mobile Devices for Health Behavior Change 
The World Health Organization defnes Mobile Health (mHealth) as 
the use of mobile and wireless technologies to support the achieve-
ment of health objectives [101]. Mobile devices such as smartphones 
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and commercial wearables are rapidly becoming an important plat-
form for the delivery of behavior change interventions to promote 
healthy lifestyles [91]. The widespread adoption of mobile devices 
provides a scalable platform that can be used by a large share of the 
population [78]. By overcoming geographical and temporal barriers, 
these mobile devices enabled a more convenient delivery of health-
care services at a lower cost compared to traditional healthcare 
services [91]. Additionally, the ubiquitous and ever-present nature 
of mobile devices allows for continuous collection of an individual’s 
contextual data and provides opportunities to deliver health inter-
ventions at the right place and time [49]. Unlike desktop computers 
or laptops, mobile devices, especially smartphones, are nearly al-
ways close to the person who owns them [19]. Previous work on 
smartphone proximity found that individuals were within arm’s 
reach of their smartphones 53% of the time and within the same 
room as their phones 88% of the time [19]. Furthermore, mobile 
devices including smartphones and smartwatches have become per-
sonal and intimate objects [46, 98]. These devices are usually used 
for various activities in the user’s daily routines, including reading 
emails, social networking, fnancial tasks, and entertainment. As 
a result, they often contain highly personal information such as 
pictures, text messages, and fnancial information [46, 98]. This per-
sonal relationship can increase acceptance and usage of mHealth 
apps, which in turn facilitate the delivery of health interventions 
in the user’s daily life [49]. 

2.2 Health Intervention Strategies Leveraging 
Mobile Devices 

With their ubiquitous nature, mobile platforms ofer an opportu-
nity for providing behavior change guidance in the user’s daily life. 
According to behavior change theories, setting a challenging yet 
attainable goal motivates an individual to achieve behavior change 
[56]. Additionally, Bandura’s social cognitive theory (SCT) [2] as-
serts that self-efcacy is a primary determinant of behavior change, 
representing an individual’s confdence in their capability to per-
form a specifc behavior within a given context. SCT underscores 
the pivotal role of repeated successes in bolstering self-efcacy, as 
previous accomplishments signifcantly shape one’s self-perception 
[2]. Leveraging the personal information collected by a mobile 
device, mHealth apps have been used to suggest adaptive health 
goals to promote physical activity. Zhou et al. [107] built CalFit, 
an app that uses a reinforcement learning-based (RL-based) algo-
rithm to suggest adaptive daily step goals based on the user’s past 
goal achievements and step counts. A 10-week study with 64 par-
ticipants demonstrated the efectiveness of the adaptive goals in 
promoting physical activity. Similarly, Miyake et al. [64] developed 
the StepUp Forecast app, which provides a prediction of the user’s 
daily and hourly steps, and showed the efectiveness of present-
ing the predictions in increasing the user’s self-efcacy and step 
count in a 5-week study with 36 participants. Moreover, Rabbi et al. 
[81] designed MyBehavior, an app that recognizes physical activity 
based on sensor data and generates contextualized, actionable, and 
low-efort recommendations. The authors conducted a 3-week pilot 
study with 17 participants and found that participants who received 
MyBehavior’s personalized suggestions walked signifcantly more. 
Lastly, Bracken and Waite [9] completed an online survey with 112 

MyFitnessPal users to investigate the relationship between their 
self-efcacy for healthy eating (SE-HE) and their achievement of 
nutrition goals. The authors found that higher SE-HE and app us-
age were signifcantly related to greater reported goal achievement. 
This fnding indicates that an individual’s belief in their ability 
to eat healthy is a major predictor of nutrition goal achievement, 
which aligns with SCT [2]. 

In addition to goal-setting, self-monitoring is another essential 
behavior change technique that has been widely used in mHealth 
apps. Self-monitoring increases the user’s awareness of their progress 
and provides an opportunity for them to adjust their strategy [4]. 
For example, self-monitoring of weight, dietary intake, and physical 
activity is a key strategy for weight management in individuals with 
obesity [12]. Daily tracking of weight and weight-related factors 
empowers individuals to evaluate their progress toward both im-
mediate and long-term goals, while also increasing their awareness 
of connections between specifc behaviors and weight, assisting in 
future goal setting [47]. Research has shown that individuals who 
engage in more frequent self-monitoring lose more weight during 
weight loss programs and regain less weight after program comple-
tion [10, 12]. Compared to more traditional paper-and-pencil tech-
niques, mHealth apps ofer advantages for self-monitoring, such 
as real-time feedback on goal progress and visualizations. Using 
mHealth apps to self-monitor may also be more socially acceptable. 
For example, using a smartphone to access nutrition information 
or log food/drinks consumed may be less stigmatizing compared to 
the use of a traditional paper log or a calorie reference book [12]. 
Popular ways of tracking progress include automated logging of 
sensor data and a journaling mechanism for users to report data on 
their own [34, 55]. For instance, the Fish’n’Steps app [55] utilized a 
pedometer for automated step count tracking, encouraged users to 
set daily step goals, and provided progress feedback. 

mHealth apps have been utilizing both goal setting and self-
monitoring as essential techniques to empower users to achieve 
health goals in various health felds, including physical activity 
promotion [53, 81], weight loss [29, 48], nutrition recommenda-
tion [31, 103], smoking cessation [89], alcohol use [1], stress re-
duction [26, 43], sleep management [17, 62] and chronic disease 
self-management [33, 104]. However, without personalized and 
actionable guidance, the app’s efect on health behavior change 
has been shown to be limited [56, 65]. Thus, an important direc-
tion for mHealth apps to promote health behavior change involves 
collaboration with health experts/interventionists. 

2.3 Context-Based Notifcations for mHealth 
Through sending push notifcations (e.g., as reminders for health-
related tasks), mHealth apps encourage users to self-monitor to 
achieve their goals of behavioral change. App notifcations increase 
users’ engagement with the apps and their adherence to health 
objectives [6, 8, 35, 40, 75]. Bidargaddi et al. [8] analyzed mHealth 
app engagement over 89 days with 1,255 participants and found 
that sending a notifcation with a tailored health message resulted 
in more app interaction within the next 24 hours than not sending 
notifcations. Patrick et al. [75] investigated the efect of text-based 
interventions on helping users lose weight over 4 months. The par-
ticipants who received text-based tailored notifcations 2 to 5 times 
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a day instead of printed material lost more weight. Although notif-
cations can aid in adherence and app engagement, users’ respon-
siveness and interest decreased as they received more notifcations, 
especially if the content was similar [6, 44, 87, 88]. Additionally, 
abandonment of health technologies prior to achieving one’s goals 
is still common [14, 30, 37, 51]. 

To increase notifcation responsiveness and mHealth app en-
gagement, prior work has explored using context-based notifcation 
systems to reach users when they are at a high level of receptiv-
ity [22, 50, 67, 68]. Previous studies have used a range of contex-
tual factors such as time, physical activity, calendar, and weather 
[36, 92, 99, 100]. For example, A-CHESS is an existing just-in-time 
adaptive intervention (JITAI) that provides location-based notif-
cations to support recovery from alcohol abuse [36]. When a user 
approaches a high-risk location (e.g., bar), A-CHESS sends a notif-
cation alert to the user. Based on a study with 349 participants over 
8 months, the participants who had access to traditional counseling 
plus A-CHESS (170 participants), compared to just traditional coun-
seling, reported signifcantly fewer risky drinking days. Künzler 
et al. [50] examined factors afecting users’ receptivity towards 
JITAIs. The authors conducted a study with 189 participants over 
a period of 6 weeks, in which participants received notifcations 
from a chatbot-based digital coach, Ally, to improve their physical 
activity levels. They found that intrinsic factors, such as personality 
and age, had an efect on responsiveness, as well as contextual 
factors (e.g., time, activity). For example, participants were more 
likely to answer prompts delivered between 10 am to 6 pm, and 
while walking instead of being still. 

However, some studies have not found evidence that context-
based notifcations provide additional benefts for user engagement 
in mHealth apps. Morrison et al. [66] investigated diferent timings 
of push notifcations for a mobile stress-management app. The 
notifcations were sent either occasionally (not every day), daily, 
or based on context (i.e., location, movement, and time of day). 
The study had a total of 77 participants who used the app for 
an average of 3 days. The authors found that participants in the 
“occasional” group responded signifcantly less often and there 
was no diference between the daily and context-based groups. 
Horsch et al. [40] examined the efect of context-based and time-
based reminders on adherence to a sleep diary app with relaxation 
exercises. Participants received context-based reminders for one 
week, time-based for another week, and then no reminders for 
one week. In the context-based group, reminders were sent when 
participants were in one location for an hour, just ended a phone 
call, or were using another app. The authors found no diference 
in completed exercises and diary entries between the time-based 
and context-based groups, only a signifcant diference between 
reminders and no reminders. 

Overall, it is unclear if context-based notifcations are more 
benefcial for mHealth app engagement and adherence than time-
based notifcations, especially long-term. In these previous studies, 
the participants only interacted with the apps for approximately 3 to 
7 days, which is a relatively short time to gauge app engagement and 
to allow for user behaviors to emerge. Therefore, in our study, we 
compare context-based and time-based notifcations over 4 weeks. 

2.4 Interruptibility 
In addition to analyzing when to send notifcations based on users’ 
context (e.g., time, location), prior work has investigated the inter-
ruptibility of users in diferent domains. A key problem with the 
design of push notifcations in software is that they often arrive at 
inopportune moments for the user [16, 44, 57]. Poorly timed notif-
cations negatively impact users’ ongoing tasks, attention, focus, and 
cognitive load, and can even result in users deleting the app [25]. To 
reduce the cost of ill-timed interruptions and increase user engage-
ment with the suggested content, previous studies have attempted 
many diferent methods of determining the ideal interruption time 
(e.g., detecting users’ physical activity transition to estimate less 
disruptive times [71]) [13, 60, 80, 96, 105]. These studies have found 
that contextual factors such as users’ engagement with ongoing 
tasks and types of current activity can be used to infer their inter-
ruptibility [27, 41, 60, 77]. Mehrotra et al. [60] created an app called 
My Phone and Me and conducted a study in which 20 participants 
were prompted to report on their interactions with notifcations for 
two months. The authors found that users’ perceived disruption 
increased as the complexity of an ongoing task rose. Other contex-
tual factors that have been found to be efective in estimating user 
interruptibility include time of the day and location [80, 90, 105]. 

Previous studies have also found that ideal moments for interrup-
tion occur at transitions between diferent physical activities (i.e., 
when a self-initiated task interruption occurs) [44, 70, 72]. Okoshi et 
al. [70, 71] created the Attelia notifcation management system that 
detects breakpoints in users’ daily lives in real-time and defers noti-
fcations until such moments. The results of their in-the-wild study 
showed that Attelia was able to reduce users’ cognitive load by 33% 
and their response time by 13% compared to sending notifcations 
at random times. In collaboration with Yahoo! JAPAN, Okoshi et al. 
[74] conducted a large-scale in-the-wild user study with more than 
680,000 participants by deploying their context-aware system to 
the Yahoo! JAPAN Android app. The authors showed that deferring 
notifcation delivery until a breakpoint inferred from users’ physi-
cal activity transitions resulted in faster response time, increased 
click rate, and improved user engagement. 

These previous studies have shown promising results in estimat-
ing the user’s interruptible moments based on contextual factors. 
However, these prior studies were not conducted in the mHealth 
domain. Therefore, we wanted to understand how applying the 
results from previous interruptibility studies in daily life to the 
context of mHealth can contribute to users’ responsiveness and 
engagement with mHealth app notifcations. 

3 METHOD 

3.1 Intervention Design 
To investigate how the timing of notifcations afects users’ engage-
ment in an mHealth app, we designed a 4-week within-subjects 
study that utilizes notifcation timing as the independent variable 
with two conditions: time-based notifcations and context-based no-
tifcations. Informed by previous research, we selected time of the 
day and physical activity transitions as the two contextual factors 
for sending context-based notifcations. Time-based notifcations 
were sent based only on the user’s time preferences at fxed times, 
while context-based notifcations were sent based on both the user’s 
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Table 1: Five types of self-monitoring data points. 

Data Type Self-Monitoring Frequency 

Weight Daily 
Lunch Daily 
Dinner Daily 
Activity Daily 
Questionnaire (Self-rated measures) Twice every week 

time preferences and physical activity transitions we detected with 
our app. 

To simulate a real-world use case, we selected weight mainte-
nance as a potential health goal for the user. Previous research has 
demonstrated the efectiveness of involving experienced domain 
experts in the design process of mHealth studies [26, 69, 106]. Thus, 
our team included a faculty member in clinical psychology with 
17 years of experience in obesity treatment and a registered dieti-
tian with 21 years of research experience. We consulted our health 
experts for selecting (1) key self-monitoring data points required 
for weight maintenance, and (2) the timing of our notifcations. 
Informed by our health experts and prior work [85], we selected 
weight, dietary intake (lunch and dinner), physical activities, and 
self-rated measures of weight-related variables (e.g., hunger) as self-
monitoring data points (Table 1). We did not include breakfast due 
to its proximity to the recommended weighing time, and to prevent 
an excessive number of notifcations. 

The self-rated measures were delivered through one weekly and 
one end-of-week check-in questionnaires; all other data points 
were daily. Notifcations for the weekly questionnaire were sent 
on a random day between Monday and Saturday, and those for 
the end-of-week questionnaire were always sent on Sunday. For 
the other four types of health data (i.e., weight, lunch, dinner, and 
activity), a daily notifcation was sent if the data was still missing 
by the scheduled notifcation time. Thus, participants received at 
most fve notifcations in a day, which aligns with suggestions 
on notifcation frequency from previous research [67]. Over a 4-
week study period, for each participant, we designed a total of 
2 (questionnaires) × 4 (weeks) + 4 (data types) × 28 (days) = 120 
opportunities for sending notifcations (60 for each condition), each 
associated with an opportunity for logging one of the fve types of 
health data. 

3.2 App Design 
Investigating our research question requires an instrumented app 
with custom functionality because no commercial app supported all 
of our requirements (e.g., self-rated measures delivered through the 
weekly questionnaires). However, building an app from scratch can 
be resource-intensive, especially when our main focus is on assess-
ing the impact of our notifcation design, as opposed to undertaking 
a comprehensive app development project. Hence, we designed 
and developed a companion app, GatorTrack, through a human-
centered iterative design process that included guidance from our 
health experts. The app integrated Google’s Activity Recognition 
Transition API [18] to detect physical activity transitions for send-
ing context-based notifcations. This companion app was created 

to pair with FatSecret [23], a commercially popular weight manage-
ment app that ofers an API [24], logging interfaces, and compre-
hensive databases for tracking food and exercise. Figure 1 shows 
the resulting app we developed for this study. Participants logged 
daily weights (Figure 1-b) and answered questionnaires through 
GatorTrack. At the bottom of the app, we implemented three tabs 
for easy navigation. The “Diary” tab directs the user to the FatSecret 
app for recording dietary intake and physical activities. 

3.3 Notifcation Design 
As mentioned in Section 3.1, for each participant, there were 120 
opportunities for sending a notifcation, each associated with a 
notifcation record (i.e., a log of the notifcation and its result) for 
one of the fve types of health data (i.e., weight, lunch, dinner, 
activity, and questionnaire). In this subsection, we describe how we 
(1) formulated a notifcation record and (2) designed the notifcation 
timings. 

Existing research has shown that user responses to notifcations 
often involve multiple stages [13, 96]. Thus, our notifcation record 
design aims to capture (1) the user’s immediate reaction to the 
notifcation and (2) whether the user acted on the target task. Figure 
2 shows the logical fow of our notifcation records based on user 
behavior in the app. Each notifcation record contains three binary 
fags (True/False) indicating the status of the record: sent, clicked, 
and completed. The sent fag indicates if the notifcation was sent. 
A notifcation would not be sent if its corresponding health data 
had already been logged before the scheduled notifcation time or 
transition (Figure 2-a). The clicked fag indicates if the notifcation 
was clicked within 60 minutes after being sent. The completed 
fag indicates if the notifcation’s corresponding health data was 
logged within 60 minutes after the notifcation was sent. When 
the clicked fag was set to True, the sent fag must also be True, 
but the completed fag could be either True or False, meaning that 
a user might have clicked on a notifcation without logging the 
corresponding health data. When the completed fag was set to 
True, the sent fag must also be True, but the clicked fag could be 
either True or False, meaning that a user might have logged the 
data without clicking on the notifcation. For each fag, if its value 
is True, the notifcation record will also contain its corresponding 
timestamp. 

Next, we collaborated with our health experts to establish notif-
cation timing based on users’ daily routines in both conditions. User 
profling has been shown to enhance the capacity of mHealth apps 
to ofer personalized services, aiding users in attaining their health 
objectives [34, 103]. Additionally, previous studies have found that 
customization in mHealth apps can increase users’ engagement 
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(a) (b) (c) 

(d) (e) (f) 

Figure 1: Screenshots of our weight maintenance system: (a) Home screen of the GatorTrack app, including a balance equation 
for displaying the daily calorie goal, a bar chart for displaying weekly activity in minutes, and a line graph for displaying 
weekly weight summary in pounds. (b) The weigh-in screen for recording the user’s daily weight. (c) The screen for displaying 
daily and weekly dietary intake details. (d) An example of the push notifcation. (e) An example of the in-app notifcation. We 
chose an orange background to complement the main gray-blue color theme to create an efective visual efect. (f) A screenshot 
of the FatSecret app. Participants logged their food and exercise in this commercial app. 

through empowering user autonomy [93]. Thus, instead of allowing users to set timers for each of the fve health data types, we im-
plemented an interface for users to set their personal schedule for 
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Figure 2: Flags of a notifcation record. (a) The notifcation was not sent if its corresponding health data had been logged before 
the scheduled time. In this case, both clicked and completed could only be False. (b) In the case where the notifcation was sent, 
within 60 minutes, clicked was set to True if the notifcation was clicked and completed was set to True if the corresponding 
data was logged. 

Table 2: Notifcation time settings in the time-based condi-
tion. 

Data Type Notifcation Time 

Weight Wake-up time + 10 mins 
Lunch Lunch time + 1 hr 
Dinner Dinner time + 1 hr 
Activity Dinner time + 1.5 hrs 
Questionnaire Bedtime - 1 hr 

wake-up time, lunch time, dinner time, and bedtime (Figure 3). As 
shown in Table 2, timing of weight notifcations is decided based on 
wake-up time since our health experts suggested that fasting morn-
ing weights are more accurate. Timing of activity notifcations is 
decided based on dinner time. More specifcally, our health experts 
suggested that activity notifcations should be sent after dinner 
time because of local weather conditions in the southeastern region 
of the United States and work hours. Timing of the questionnaire 
notifcations corresponds to bedtime since the questionnaire was 
intended to be a refection at the end of the day. 

In the time-based condition (Table 2), we shifted the correspond-
ing user time preference for each type of data by a specifc duration, 
based on input from our health experts, and confgured GatorTrack 
to send notifcations at those fxed times. For example, if the user 
set their wake-up time at 5:30 AM, the app will send a weight 
notifcation at 5:40 AM. 

In the context-based condition (Table 3), we selected a specifc 
time range for each type of data based on users’ daily routine. As 
shown in Figure 4, upon entering the corresponding time range, 
the GatorTrack app started listening for transitions and sent a noti-
fcation when the corresponding type of transition (Table 3) was 
detected. Thus, our context-based notifcations took into account 
both contextual factors: time of day and physical activity transi-
tions. If no transitions were detected by the end of the time range, a 
notifcation was sent, which we denoted as a “timeout” notifcation. 
Previous studies in the feld of weight maintenance highlighted the 
importance of recording one’s health data shortly after performing 
the target behavior (e.g., eating and/or exercising). Thus, notifca-
tions in both conditions were designed to stay in the notifcation 
panel for at most 60 minutes before disappearing, in order to mea-
sure the user’s timely response to the notifcations. The specifc 
duration was decided based on our survey of prior work in the 
interruptibility feld [60, 71, 80]. 

3.4 Testing Scenarios and Pilot Test 
GatorTrack utilizes Google’s Transition API [18] to detect transi-
tions between fve types of physical activity, including Still, Walking, 
Running, On Bicycle, and In Vehicle. To ensure that the API would 
be able to capture transitions fast and accurately enough for our 
research goal, prior to the study, three researchers conducted tests 
using a prototype app in 214 simulated scenarios that included six 
types of transitions: Still to Walking, Walking to Still, Running to 
Walking, Running to Still, Walking to In Vehicle, and In Vehicle 
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(a) (b) (c) 

Figure 3: Screenshots of the “Settings” screen in GatorTrack: (a) Clicking on the “Gear” icon on the app home screen (Figure 1-a) 
directs the user to this “Settings” screen, which displays four categories for the user’s daily schedule. (b) Clicking on one of the 
categories (e.g., “Wake Up Time”) displays a drop-down menu that allows the user to set their time preferences for each day of 
the week. (c) Clicking on one of the days (e.g., “Saturday”) displays a list of 48 time options, each separated by 30 minutes. 

Figure 4: An illustration of the context-based notifcation scheme. Using the example provided in Figure 3, in which the “Wake 
Up” time is set at 5:30 AM on Saturday, and assuming the user has not logged their daily weight, in the time-based condition, 
GatorTrack will send a weight notifcation at 5:40 AM on Saturday, according to Table 2. In the context-based condition, 
GatorTrack will listen for transitions from 5:00 AM to 7:30 AM on Saturday, and send a weight notifcation if any type of 
transition is detected within this time range, according to Table 3. 

to Walking. These scenarios were crafted through collaborative app in their daily lives. As shown in Table 4, in these testing scenar-
brainstorming sessions involving our HCI researchers and health ios, we varied (1) the physical activity, (2) the duration, and (3) the 
experts, aiming to capture how individuals might interact with our position of the phone. For example, we used the following testing 
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Table 3: Notifcation time settings in the context-based condition. 

Data Type Detection Start Time Detection End Time Transition Type 

Weight 
Lunch 
Dinner 
Activity 
Questionnaire 

Wake-up time - 30 mins 
Lunch time + 30 mins 
Dinner time + 30 mins 
Dinner time + 1 hr 
Bedtime - 1.5 hrs 

Wake-up time + 2 hrs 
Lunch time + 2 hrs 
Dinner time + 2 hrs 
Dinner time + 2.5 hrs 
Bedtime 

Any transition 
Any movement to Still 
Any movement to Still 
Any movement to Still 
Any movement to Still 

Table 4: Variables in our API testing scenarios. 

Variables Options 

Physical Activity Sit, Walk, Run, Drive 
Duration 10s, 30s, 1m, 2m, 5m, 30m, 1hr 
Phone Position Being used, Held in the hand but not used, On the desk, In the pocket 

scenario for the “Still to Walking” transition: “[user] sits at his desk 
for 1h with his phone lying on the desk not used, and then he 
stands up and walks around while using the phone for 30s.” Over 
the course of one month, three researchers collectively tested the 
214 scenarios one at a time, following the procedure of creating 
a log fle locally on the testing device through the prototype app, 
performing the activity while timing themselves, and clicking on 
the notifcation if it was triggered by the target transition, which 
would update the log fle with the detected timestamp. Our results 
from this preliminary testing showed that the API requires 56 sec-
onds on average to register a transition with 92% accuracy (i.e., it 
failed to detect a transition in 17 total scenarios). 

Following the full development and release of the GatorTrack 
app on Google Play, we conducted a two-week pilot study with 3 
participants recruited via word-of-mouth to identify potential us-
ability and technical issues. Based on the feedback obtained during 
the pilot study, we updated our onboarding materials to include 
a more comprehensive description of functionality ofered by Fat-
Secret. Regarding GatorTrack, the initial design allowed users to 
select daily schedule time options within the time frame of 6 AM 
to 11 PM, with intervals of 30 minutes. However, in the pilot study, 
we observed that one participant reported waking up as early as 
4:30 AM to 5 AM, while another participant reported a bedtime 
of approximately 1 AM to 2 AM. Thus, we expanded the available 
time options to cover a full 24-hour cycle, thereby accommodating 
more diverse user schedules, as shown in Figure 3. 

3.5 Recruitment and Participants 
We recruited 30 participants who met our inclusion criteria from 
the local community and cities within the same time zone through 
word of mouth, university email lists, posted fyers, and in-person 
recruiting at local places such as libraries and museums. Our inclu-
sion criteria were as follows: (1) being in the age range of 18 to 70 
and (2) owning a Samsung Android phone. We exclusively recruited 
Samsung phone users because during our beta testing, the Activity 
Recognition Transition API [18] performed the best on Samsung 
phones compared with other Android phone brands. Additionally, 
a weighing scale was necessary for the study. Participants without 

a weighing scale received one at no cost and were allowed to keep 
it. There were 20 self-identifed males and 10 self-identifed females 
who ranged in age from 18 to 54 (M = 27.93; SD = 8.47). 27 partic-
ipants lived in our local community, while 3 lived in other cities 
within the same time zone. 5 participants identifed as White, 2 as 
Black or African American, 19 as Asian, 1 as Hispanic or Latino, 2 
as Middle Eastern, and 1 preferred not to answer. 18 participants 
stated they had experience with mHealth apps, while 12 did not. 
We opted not to restrict our participant selection to individuals ac-
tively pursuing weight-related goals, as our primary focus was on 
investigating the comparative efectiveness of contextual notifca-
tions in triggering self-monitoring behaviors, regardless of whether 
participants had a predefned goal. We also chose not to impose 
restrictions on the use of other apps or travel, primarily to maintain 
the natural fow of users’ daily lives. It’s crucial to highlight that 
our implementation automatically adjusted timestamps based on 
the time zone, ensuring the accuracy of notifcation times even in 
situations involving travel across time zones. 

3.6 Study Procedure 
Our study included three Zoom meetings: the onboarding meet-
ing, followed by two weeks of the study, the check-in meeting, 
another two weeks, and lastly, the fnal meeting (Figure 5). During 
the onboarding meeting, the participant provided electronic in-
formed consent. We then created accounts in both GatorTrack and 
FatSecret for the participant and demonstrated a comprehensive 
walk-through of the two apps. We counterbalanced condition order 
by alternately assigning participants to either a context-frst group 
or a time-frst group. Participants were asked to record their weight, 
dietary intake, and physical activity every day, and self-rated mea-
sures of weight-related variables twice per week. Depending on 
the condition, participants received context-based or time-based 
notifcations as reminders only through GatorTrack. We asked par-
ticipants to disable all notifcations from FatSecret. After two weeks, 
we conducted a mid-study check-in interview, in which we asked 
participants a set of semi-structured questions focusing on their 
preferences and usage of the apps and notifcations, and addressed 
any potential technical issues they might have encountered. After 
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Figure 5: Study procedure. The order of conditions was counterbalanced across participants. 

another two weeks, we concluded the study with a fnal interview, 
which included another set of semi-structured questions focusing 
on participants’ overall experience and a debriefng in which we 
explained the diference between the two types of notifcations they 
had received. Interested readers can fnd in the supplementary ma-
terial our interview questions. For confdentiality, each participant 
was assigned a unique 4-digit ID number, ensuring that logged in-
formation remained disconnected from individual identities. While 
the Transition API required location services to be enabled on par-
ticipants’ smartphones over the course of the study, we neither 
accessed nor stored geographical coordinates. Participants received 
$20 per week as compensation if they continued to log at least one 
type of health data per week, totaling $80 upon study completion. 
Our study protocol was approved by our university’s Institutional 
Review Board. 

3.7 Collected Data 
Before we conducted our data analysis, we ran several sanity checks 
on the collected data. We found that, for two participants (one in the 
context-based condition and the other in the time-based condition), 
we encountered a technical issue that resulted in one notifcation 
(out of 120) not being sent over the course of the study. Our app also 
sent additional weekly check-in questionnaires to 5 participants (2 

in the context-based condition and 3 in the time-based condition), 
totaling 5 extra notifcations, due to another technical issue. To 
mitigate these limitations in our data analysis, we normalized the 
log counts by the actual number of notifcations sent. 

Our study was conducted over 179 days between November 2022 
and May 2023, with each of the 30 participants using our tracking 
system for 28 days. As described in Section 3.3, our system was de-
signed to create 120 notifcation records per participant, with each 
corresponding to an opportunity for logging one of the fve health 
data types (i.e., weight, lunch, dinner, activity, and questionnaire), 
totaling 3600 notifcation records. However, due to the technical 
issue described above, our system created a total of 3605 notif-
cation records, associated with 3605 daily logging opportunities. 
Among these 3605 logging opportunities, participants recorded a 
total of 2060 (57.14%) daily logs, with an average of 68.67 per par-
ticipant (min = 22; max = 112; SD = 20.68). Regarding notifcation 
records, a total of 2922 (81.05%) notifcations were sent, with an 
average of 97.4 sent notifcations per participant (min = 44; max 
= 118; SD = 14.39). Out of these sent notifcations, a total of 441 
(15.09%) notifcations were clicked, with an average of 14.7 clicked 
notifcations per participant (min = 2; max = 55; SD = 10.03). A total 
of 514 (17.59%) notifcations were completed, with an average of 
17.13 completed notifcations per participant (min = 3; max = 46; 



Investigating Contextual Notifications to Drive Self-Monitoring in mHealth Apps for Weight Maintenance CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

SD = 10.78) (recall that a notifcation could be completed without 
being clicked). 

3.8 Data Analysis 
Our study was a within-subjects study employing one independent 
variable with two levels: notifcation timing (i.e., condition, time-
based or context-based). We conducted quantitative analysis on 
four dependent variables, detailed in the next section, capturing our 
participants’ engagement with the notifcations from GatorTrack 
and self-monitoring features in both apps. We frst ran a repeated 
measures one-way ANOVA on our data. We initially selected a 
parametric test because our dependent variables were continuous 
numeric values. However, since empirically sampled data often 
does not conform to the assumptions of normality, leading to the 
violation of prerequisites for parametric tests, we also ran the non-
parametric Wilcoxon Signed-Rank test. We present the results for 
the repeated measures one-way ANOVA only if both the parametric 
and non-parametric tests showed the same patterns of signifcant 
diference between two conditions (� < 0.05). Additionally, to iden-
tify themes that could help illuminate the patterns we observed 
in the quantitative data, we transcribed the 60 interview record-
ings and analyzed the responses through afnity diagramming–a 
bottom-up, inductive method for organizing large-scale qualitative 
data [7]. We opted not to calculate inter-rater reliability, as it is 
not recommended when the research focus is on identifying con-
cepts and themes [58]. Similar to prior work [102], to create the 
afnity diagram, fve researchers broke down the transcripts into 
individual utterances and converted each of them into sticky notes 
using Miro [63], an online whiteboard tool for remote collaboration. 
Subsequently, we iteratively grouped a total of 818 sticky notes 
into themes. Initially, we identifed 14 central categories, which we 
further combined into 7 main themes. 

4 RESULTS 
To investigate the infuence of notifcation timing on user engage-
ment with self-monitoring, we selected four dependent variables to 
measure user engagement: overall log rate, notifcation click response 
time, notifcation click rate, and notifcation completion rate. Table 5 
shows the defnitions and results of our repeated measures one-way 
ANOVA on the four dependent variables with a within-subjects 
factor of notifcation timing (i.e., condition). Figure 6 provides an 
overview of our results in box and whisker plots while Figure 7 
demonstrates the raw data and efective size. 

4.1 Overall Log Rate 
To measure the user’s daily self-monitoring behavior, we investi-
gated the overall log rate. We defne the overall log rate as the overall 
count of daily logs for each data type (i.e., weight, lunch, dinner, 
physical activity, and questionnaire) divided by the anticipated total 
number of daily logging events. We only counted one data log for 
each data type per day; for example, a participant who logs two 
items for lunch, would have the same performance measure as a 
participant who logs only one item for lunch, emphasizing the daily 
monitoring practice. 

In general, in each condition, the target was to have 60 daily 
logging events per participant. However, as mentioned in Section 

3.7, due to technical issues, we adjusted this count for certain par-
ticipants. Specifcally, for 5 participants who received an additional 
weekly-questionnaire notifcation, we increased the target count 
by one event in the corresponding condition, making it 61. For 2 
other participants who did not receive one notifcation as a result 
of technical issues, we decreased the target count by one, bringing 
it down to 59. 

In the time-based condition, the average overall log rate was 
55.54% (min = 16.67%; max = 91.67%; SD = 17.85%). In the context-
based condition, the average overall log rate was 58.87% (min = 
16.39%; max = 95%; SD = 20.51%). The context-based condition had 
a greater average overall log rate than the time-based condition by 
3.33% (95% CI: [-3.07, 9.73]). A repeated measures one-way ANOVA 
on overall log rate with a within-subjects factor of notifcation timing 
found no signifcant diference between the two conditions (�1,29 = 
1.1302, � > 0.05). This result suggests that being in the context-
based condition had no signifcant efect on the overall log rate. 

4.2 Notifcation Click Response Time 
To investigate if sending context-based notifcations can motivate 
the user to respond more promptly to these notifcations, we ran 
analysis on the notifcation click response time. We defne the notif-
cation click response time as the time elapsed between the time when 
the notifcation was clicked and the time when it was sent. This 
decision is motivated by prior research in the feld of weight man-
agement, which emphasized the importance of promptly document-
ing one’s health data following the execution the target behavior, 
such as eating or exercising. This measure can only be computed 
if the notifcation was clicked. We removed 4 participants (2 for 
each condition) from this analysis because they did not click on 
any notifcations in the second half of their study. 

In the time-based condition, the average notifcation click re-
sponse time was 18.42 minutes (min = 3.29m; max = 46m; SD = 
10.99m). In the context-based condition, the average notifcation 
click response time was 12.33 minutes (min = 2.47m; max = 36.25m; 
SD = 8.5m). The time-based condition had a greater average noti-
fcation click response time than the context-based condition by 
6.09 minutes (95% CI: [1.72, 10.47]). A repeated measures one-way 
ANOVA on notifcation click response time with a within-subjects 
factor of notifcation timing found a signifcant diference between 
the two conditions (�1,25 = 8.2484, � < 0.01). This result suggests 
that context-based notifcations were clicked within signifcantly 
less elapsed time than time-based notifcations. 

4.3 Notifcation Click Rate 
To investigate the efect of context-based notifcations on the fre-
quency of user responses, we also ran analysis on the notifcation 
click rate. We defne the notifcation click rate as the number of 
clicked notifcations divided by the number of sent notifcations, 
where a clicked notifcation indicates that the notifcation was 
clicked within 60 minutes after being sent. 

In the time-based condition, the average notifcation click rate 
was 13.96% (min = 0%; max = 73.08%; SD = 14.01%). In the context-
based condition, the average notifcation click rate was 19.05% 
(min = 0%; max = 61%; SD = 14.99%). The context-based condition 
had a greater average notifcation click rate than the time-based 
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Table 5: Defnitions and results of our repeated measures one-way ANOVA on the four dependent variables with a within-
subjects factor of notifcation timing. Starred (*) rows are signifcant at the p < .05 level; those with a + are signifcant at the 
p < .01 level. 

Dependent Variable Defnition p-value 

Overall log rate 
Notifcation click response time (m) 
Notifcation click rate 
Notifcation completion rate 

Overall count of daily logs / Total logging opportunities 
Notifcation clicked time - Notifcation sent time 
Number of clicked notifcations / Number of sent notifcations 
Number of completed notifcations / Number of sent notifcations 

0.2965 
0.0082+ 
0.0113* 
0.0110* 

(a) (b) 

(c) (d) 

Figure 6: Box and whisker plots illustrating the notifcation timing conditions against the four dependent variables: (a) overall 
log rate, (b) notifcation click response time, (c) notifcation click rate, and (d) notifcation completion rate. Refer to Table 5 
for the defnition of these dependent variables. The notifcation timing conditions include time-based and context-based 
conditions. 

condition by 5.09% (95% CI: [1.24, 8.94]). A repeated measures one-
way ANOVA on notifcation click rate with a within-subjects factor 
of notifcation timing found a signifcant diference between the 
two conditions (�1,29 = 7.3207, � < 0.05). This result suggests that 
context-based notifcations were clicked signifcantly more often 
when compared to time-based notifcations. 

4.4 Notifcation Completion Rate 
To investigate the efect of notifcation timing on the user’s timely 
self-monitoring behavior throughout the day, we ran analysis on 
the notifcation completion rate. We defne notifcation completion 
rate as the number of completed notifcations divided by the number 
of sent notifcations, where a completed notifcation indicates that 
the notifcation’s corresponding health data was logged within 60 
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(a) (b) 

(c) (d) 

Figure 7: Estimated mean diferences in (a) overall log rate, (b) notifcation click response time, (c) notifcation click rate, and 
(d) notifcation completion rate between context-based and time-based conditions, with 66% CI, 95% CI, and kernel density 
estimate of the sampling distribution. 

minutes after the notifcation was sent. Because self-monitoring 
can occur at anytime during the day depending on individual dif-
ferences, in order to measure the direct efect of notifcations on 
self-monitoring behaviors, we aimed to measure the logging behav-
iors that were directly associated with the notifcations we sent. 

In the time-based condition, the average notifcation completion 
rate was 17.32% (min = 0%; max = 73.08%; SD = 14.93%). In the 
context-based condition, the average notifcation click response 
time was 21.77% (min = 0%; max = 83.33%; SD = 18.10%). The context-
based condition had a greater average notifcation completion rate 
than the time-based condition by 4.45% (95% CI: [1.10, 7.78]). A 
repeated measures one-way ANOVA on notifcation completion 
rate with a within-subjects factor of notifcation timing found a 
signifcant diference between the two conditions (�1,29 = 7.3831, 
� < 0.05). This result suggests that context-based notifcations 
were also completed signifcantly more often when compared to 
time-based notifcations. 

4.5 Main Categories and Themes 
We present seven general themes identifed through our qualitative 
analysis of the interview recordings, with specifc examples from 
our interview transcripts. 

4.5.1 Notification Interaction. During our interviews, participants 
described their daily interaction with notifcations. Some partici-
pants logged their data immediately upon receiving notifcations, 
with some explicitly mentioning that they did so because of con-
cerns about the unreliability of their memory. For example, P1356 
said, “When I weigh myself in the morning, if I don’t enter it right 
away, it is easy for me to forget the number.” On the contrary, instead 
of logging data immediately upon receiving the notifcation, there 
were participants who chose to log all their data at once, often 
towards the end of the day, saying, for example, “I like to input my 
information, after I had the fnal meals, like the fnal meals of the day.” 
(P2610). Among those participants, some specifcally described their 
strategies of handling notifcations. For example, some participants 
mentioned the strategy of remembering the task and completing it 
later: “Whenever I see [the notifcation], I’m normally in the middle 
of something. So I say, okay, I’ll do it later.” (P3792). Others indicated 
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leaving notifcations unread in the panel and attending to them 
when available or later in the day: “If it’s important, I leave it there. 
If not, I just delete it and then I’ll check it later.” (P9772). Addition-
ally, some participants tended to treat notifcations in the panel as 
summaries, choosing to clear all of them at once without clicking, 
and subsequently engaging with the associated tasks. For example, 
P7173 said, “I guess I kind of like to dismiss a lot of the notifcations 
because it’s pretty much the same thing over and over.” 

4.5.2 Notification Efectiveness. In general, most participants found 
notifcations efective in reminding them to log their health data. 
Additionally, in certain cases, notifcations had the additional ca-
pability to trigger the associated behavior itself (e.g., eating), not 
just prompting the logging behavior. For example, P1356 said, “It 
reminds me that I have to eat. It’s less, for me, it’s less about tracking 
because tracking has just become hand in hand with the eating for 
this period of time. So it’s just, especially for lunchtime for me, it’s 
like, hey, I need to take a break to go grab some lunch.” Furthermore, 
some participants mentioned that they had developed a habit of 
tracking their health data during the study, saying, for example, “It 
does [drive me more consistent] because it becomes a habit.” (P8487). 
P9696 also said, “But it’s three or four weeks into the study. I’m used 
to it now. In the beginning, they were useful, but right now it’s just, I 
don’t really think about the notifcations. I just do it.” 

4.5.3 Notification Preferences. Participants exhibited personalized 
preferences in various aspects. Regarding notifcation content, while 
some preferred the simplicity and consistency of our design of the 
notifcation, others suggested that the notifcation content could 
be more intriguing. For example, P7173 said, “I don’t know why 
I’m thinking about the wording so much, because in my head I just 
think of, like, jokes, some variation or playfulness. Maybe not sarcasm 
or insulting. That’s the kind of humor I like personally though. But 
like, I guess have some playfulness to it, you know, like, have you 
been active?” In terms of notifcation frequency, most participants 
mentioned that the number of notifcations was appropriate. For 
example, P4343 said, “I remember it’s like one or two times a day. So, 
it’s a very good number.” 

4.5.4 User Agency. Participants expressed their need for more cus-
tomizable settings in FatSecret, particularly regarding fexible food 
choices for home-cooked meals. For example, P1356 said, “If I make 
something from scratch, it’s hard for me to account for, you know, how 
much oil I put in it when I’m cooking it and how much of this? and 
how much that? ... A number of times I was going to have something 
I don’t even know what to enter.” Some participants expressed their 
desire for control over how data is displayed and their need for 
the fexibility to log for previous days. For example, P4343 said, “I 
can only record my weight within 24 hours. Let’s say I forgot to log it 
in. And when I log it in, like, let’s say, 12:30 AM, then it will become 
another day, and, the previous day will be just skipped. So if there’s 
any function that I can trace back to the previous day, that would be 
very helpful.” 

4.5.5 Context of Use. In general, most participants mentioned ad-
hering to their usual routines without making adjustments. For 
example, P2610 mentioned, “Usually my daily schedules are pretty 

consistent. Nothing really changed.” Nonetheless, there were par-
ticipants who engaged with their smartphone in varied ways de-
pending on the context of their daily lives. Location afected how 
participants interacted with their smartphone. Some participants 
did not always have their phones with them at home, stating, for 
example, “Like I said, I work at home, so I just leave it [the phone] 
close by, but I don’t carry it anywhere, so if I walk through the house, 
I just leave it on the ofce [table].” (P9689). Additionally, some partic-
ipants had diferent phone usage patterns depending on weekdays 
or weekends. There were also specifc events in participants’ lives 
that infuenced how they engaged with our weight maintenance 
system. For example, one participant (P9772) mentioned that fnal 
exams caused them to be less active, saying, “It’s just that sometimes 
I forget. Because lately it’s been just fnals and stuf, so, lots of stuf.” 

4.5.6 System Usefulness. Most participants perceived GatorTrack 
as simple and user-friendly, considering it easily accessible and 
navigable. For example, P1753 stated, “I could log when I ate food, 
what I ate, log my weight and see all of the trends ... everything is very 
nicely laid out, easy to use, like, simple and intuitive user interface.” 
Participants also found the real-time feedback, delivered through 
a calorie balance equation and summary graphs (Figure 1), to be 
helpful in increasing their self-awareness and motivating them to 
track. For example, P4664 said, “I actually really plan to lose weight 
and when I see [the] graph, I see how much has changed. Kind of 
makes me think maybe I should watch my calories more.” 

4.5.7 System Integration. Most participants expressed their desire 
for an integrated app comprising of both GatorTrack’s and Fat-
Secret’s functionalities. For example, P6213 stated, “Whatever the 
other app [FatSecret] provides me, this [GatorTrack] is just a, a small 
subset of it. So instead I just use the FatSecret app because it provides 
me more fexibility and options.” Some participants expressed frus-
tration with delays in synchronization and inaccuracies in data 
from diferent sources. For example, P6827 stated, “It would be cool 
if it [GatorTrack] could run on its own and not have to be with an-
other app [FatSecret] sometimes ... it does take a little while to sync 
data.” A common practice was to immediately confrm the accu-
racy of recorded data and verify correct synchronization between 
GatorTrack and FatSecret after self-weighing or data logging. 

5 DISCUSSION 
We discuss the overall conclusions we can draw from our results, as 
well as how variations in our participants’ individual self-monitoring 
behaviors afected them, whether or not the use of physical activ-
ity transition detection made a diference in self-monitoring, and 
implications for design of future weight management apps. 

5.1 Efects of Notifcations on Self-Monitoring 
Behaviors in Our Study 

Prior research in the domain of weight management has empha-
sized the signifcance of self-monitoring one’s health data each day 
[10–12]. Therefore, in our study, we measured the participant’s 
engagement with daily self-monitoring by calculating the overall 
log rate, which counted one data log for each data type per day. 
Based on our results (Table 5), while the average overall log rate was 
slightly higher in the context-based condition (58.87%) compared 
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to the time-based condition (55.54%), this diference was not signif-
cant. This implies that participants did not necessarily engage with 
self-monitoring more in the context-based condition. According to 
the Fogg Behavior Model [28], a certain behavior will be performed 
when an individual (1) is sufciently motivated, (2) believes they 
have the ability to perform the behavior, and (3) is triggered to per-
form the behavior. Thus, while our notifcations acted as triggers 
(#3), these are just one component of the broader behavior change 
process. Some previous research on mHealth apps has explored 
the impact of goal-setting features (#1) and users’ self-efcacy (i.e., 
their belief in their ability to perform a behavior) (#2) on health 
behavior change [9, 64, 107]. More studies are needed to understand 
how these factors, along with self-monitoring, interact to shape the 
user’s behavior change process. 

When considering just those cases when participants actually 
engaged in self-monitoring behaviors, that is, when they engaged 
with the notifcations and/or actually logged data, context-based no-
tifcations provided a beneft. We investigated the efects of context-
based notifcations on timely self-monitoring behavior (within 60 
minutes after the notifcation was sent) by looking at notifcation 
click response time, click rate, and completion rate; all three of these 
dependent variables showed signifcant efects of notifcation tim-
ing condition. On average, participants clicked notifcations faster 
(12.33m vs. 18.42m) and more frequently (19.05% vs. 13.96%) when 
they were in the context-based condition compared to when they 
were in the time-based condition. Prior work in the interruptibility 
literature has shown that deferring notifcation delivery until a 
natural breakpoint occurs, inferred from users’ physical activity 
transitions, resulted in faster response times and increased click 
rates [73, 74]. Our study expands this literature by showing similar 
results in an mHealth weight maintenance self-monitoring app. 
It is important to point out that responding more to notifcations 
does not necessarily imply that the user also logs data more fre-
quently. But, participants also on average completed notifcations 
more frequently (21.77% vs. 17.32%) in the context-based condi-
tion compared to the time-based condition. Since the notifcation 
was marked as complete only if the corresponding data was logged 
within 60 minutes after the notifcation was sent, the notifcation 
completion rate captured the user’s timely engagement with the 
self-monitoring behavior. In our study, we sent notifcations based 
on the user’s specifed daily schedule in both conditions, as detailed 
in Table 2 and Table 3. The underlying assumption was that users 
would adhere to the schedules they have specifed. Our interview 
data largely supported this assumption, with most participants indi-
cating they maintained consistent routines without making changes. 
However, it is crucial to highlight a critical aspect of the relevance of 
notifcations in triggering timely self-monitoring behaviors—there 
could be a potential scenario where the user changed their personal 
schedule without updating the settings in GatorTrack accordingly, 
which would lead to a situation where completing a notifcation 
within 60 minutes might not have been timely with regard to the 
self-monitoring of the target behavior (eating or exercising). No-
tably, utilizing a mobile device to capture the full picture of the 
user’s life comes with the inherent limitation of the need to rely on 
the user’s active and precise personal settings and self-report. 

This result shows that sending context-based notifcations had 
a signifcant positive efect on motivating the timely (within 60 

minutes) daily self-monitoring behaviors recommended by best 
practices in the clinical health psychology literature [10–12] and 
our own health experts. The benefts of timely self-monitoring 
include enhanced self-awareness for adjustment within the day, 
mitigation of memory biases, and the potential for efective real-
time health interventions and the development of predictive ma-
chine learning models for adaptive and personalized health services. 
We discuss the details of our implications for the design of future 
weight maintenance app in Section 5.4. 

5.2 Individual Diferences in Self-Monitoring 
Behaviors in Our Study 

Our analysis of the signifcant notifcation completion rate, the count 
of data logged within 60 minutes after the associated notifcation 
was sent, also pointed to individual diferences between partici-
pants’ patterns of self-monitoring behavior that were interesting 
to examine in more detail, especially in contrast to the lack of sig-
nifcant diferences in the overall log rate results. As illustrated in 
Figure 2, the overall log rate measurement takes into account daily 
logging events in three cases relative to the scheduled notifcation 
time: (C1) data logged before the notifcation time (preventing a 
notifcation from being sent at all) [the blue duration in Figure 2-a], 
(C2) data logged within 60 minutes after the notifcation was sent 
(notifcation completion rate) [the orange duration in Figure 2-b], 
and (C3) data logged more than 60 minutes after the notifcation 
was sent. The signifcant efect of notifcation timing condition on 
notifcation completion rate (C2) suggests that context-based notif-
cations can trigger more timely self-monitoring behavior. However, 
the lack of a signifcant efect of notifcation timing condition on 
the overall log rate (C1+C2+C3) suggests that individual diferences 
may have infuenced our overall self-monitoring behavior measure. 

As we saw from our qualitative analysis, some participants men-
tioned that they developed a habit of tracking their health data 
during the study after a period of time, which corresponds to C1. 
Additionally, there were participants who tended to log all their 
data at once, usually at the end of the day, which corresponds to 
C3, instead of immediately upon receiving a notifcation. Some 
participants stated that they would remember the task and do it 
afterwards, while others mentioned that they would leave the noti-
fcations unread in the panel and address them later in the day. We 
can infer from these participants’ comments that, even though the 
notifcations were not responded to within 60 minutes after being 
sent, they still had the efect of triggering participants’ logging 
behavior by virtue of the reminder. 

While prior work (e.g., A-CHESS [36]) focused on designing 
contextual notifcations to help users develop a target health be-
havior (e.g., recovery from alcohol abuse), our work focused on an 
essential component for promoting health behavior change—self-
monitoring, a practice proven to contribute to achieving the target 
health goal, such as weight maintenance [11, 12, 47, 64]. Apart 
from showing that contextual notifcations signifcantly increased 
timely self-monitoring, our interview data revealed an interesting 
observation: when delivered before a meal, for some participants, 
notifcations had the additional capability to trigger the relevant be-
havior itself (e.g., eating), beyond prompting the logging behavior. 
Although such situations (e.g., receiving lunch notifcations before 
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the participant had eaten lunch) suggest that the notifcations were 
not timed as intended, in certain cases, the notifcations appeared 
to contribute positively to supporting health behavior change. This 
observation hints at the potential use of contextual notifcations for 
triggering relevant behaviors (e.g., eating and exercising) to support 
weight maintenance in future studies. However, given that the rele-
vant behavior itself demands more efort than simply monitoring, 
additional behavior change techniques may be necessary. 

5.3 Detection of Physical Activity Transitions 
Helped Increase Timely Self-Monitoring 

Recall that we considered two contextual factors for sending our 
context-based notifcations: time of day and physical activity tran-
sitions, detected through the use of Google’s Transition API. In 
our design, we factored in the time of day by creating a time range 
(2.5 hours for weight data, 1.5 hours for other types) aligned to 
the participant’s daily schedule in which to listen for their activity 
transitions (Table 3). If no transitions were detected by the end of 
the time range, a “timeout” notifcation was still sent. In our analy-
sis of the notifcation completion rate, context-based notifcations 
triggered signifcantly more data logging events compared to time-
based notifcations (21.77% vs. 17.32%). To understand the efect of 
each contextual factor, we further examined the percentages of noti-
fcations sent based on the detection of physical activity transitions 
(i.e., transition-triggered notifcations) and those sent by the end 
of the specifed time range when no transitions had been detected 
(i.e., timeout notifcations). We found that among the 278 completed 
context-based notifcations, 108 (38.85%) were transition-triggered 
notifcations while 170 (61.15%) were timeout notifcations. This 
result suggests that, while transitions were prevalent, they were not 
the only driving factor behind logging behaviors. In fact, some par-
ticipants mentioned they did not always keep their phones on them, 
making activity transition detection infeasible. However, when we 
compared only the context-based “timeout” notifcations with the 
purely time-based notifcations, a repeated measures ANOVA on 
notifcation completion rate with a within-subjects factor of notifca-
tion timing (timeout, M = 20.05%; SD = 16.02%; vs. time-based, M = 
17.32%; SD = 14.93%) found no signifcant diference (�1,29 = 2.0684, 
� > 0.05). When we compared only the context-based transition-
triggered notifcations with the time-based notifcations, a repeated 
measures ANOVA on the notifcation completion rate with a within-
subjects factor of notifcation timing (transition-triggered vs. time-
based) did fnd a signifcant diference (�1,29 = 5.9181, � < 0.05). 
The average completion rate for context-based transition-triggered 
notifcations alone (M = 26.64%; SD = 25.83%) was higher than purely 
time-based notifcations (M = 17.32%; SD = 14.93%). This result sug-
gests that, while transition-triggered notifcations were slightly less 
frequent overall than timeout notifcations in the context-based con-
dition, these transition-triggered notifcations played a signifcant 
role in triggering more timely self-monitoring behaviors. 

5.4 Implications for the Design of Future 
Weight Maintenance Apps 

The weight management literature (and broader literature on self-
monitoring [3]) recommends that, to achieve the greatest beneft 
from self-monitoring, people should log their food and activity 

throughout the day (i.e., as eating/exercising occurs) versus wait-
ing until the end of the day to log [10–12]. The benefts of timely 
self-monitoring are threefold: (1) the practice of tracking and re-
ceiving real-time feedback fosters timely self-refection, enhances 
self-awareness, and provides opportunities for adapting dietary or 
exercise plans [3, 47]; (2) logging health data promptly when the 
behavior occurs addresses the unreliability and recall bias of human 
memory [42]; and (3) the accurate logging of real-time data holds 
potential for efective real-time health interventions and the de-
velopment of predictive machine learning models, enabling timely, 
adaptive, and personalized health services [68]. Logging as soon 
as possible after eating/exercising occurs helps individuals to be 
more mindful of their within-day progress, so that they have op-
portunities to make changes according to their daily calorie goal, 
for example, adjusting the portion size of their later meals based 
on earlier ones if needed, or adapting their exercise plans. It can 
also help individuals plan ahead for their daily health goals if there 
happen to be special events to consider or interruptions in their 
routine schedules. Timely self-monitoring further enables real-time 
feedback on users’ recorded data, ofering a chance for them to 
adapt and refne their goals and strategy—another key recommen-
dation from the weight maintenance literature [20]. GatorTrack 
provided real-time feedback through a calorie balance equation 
and summary graphs (Figure 1), based on design recommendations 
from our health experts, that were viewed by participants as easily 
accessible and navigable. 

However, we heard from some participants in our study that 
their logging pattern was to remember what they ate and log all 
data at the end of the day. In addition to these participants missing 
out on the chance for just-in-time adjustment, there is also the 
challenge of human memory being unreliable [42] when logging 
after the fact. Retrieving an event from memory and reconstructing 
it can unintentionally introduce biases and inaccuracies [45, 95], 
even within a single day’s events. Moreover, the recall bias can be 
more pronounced for dietary intake due to the frequent nature of 
eating, making it easy to forget details [86]. 

Lastly, self-reporting, a primary data source in weight mainte-
nance apps, provides health professionals with insights into users’ 
daily routines for personalized feedback and treatment. Logging 
data as close to the occurrence of the behavior as possible ofers real-
time information crucial for efective real-time health intervention. 
For example, an adaptive weight maintenance intervention relies 
on data points with precise timestamps of when the behavior actu-
ally occurs to deliver the most efective intervention. Furthermore, 
accurate real-time data can potentially be used for developing pre-
dictive machine learning models (e.g., reinforcement learning-based 
models [61]) that are capable of empowering health professionals 
to provide real-time, adaptive, and personalized health services. 

As discussed, the results from our study showed that contex-
tual notifcations were efective in triggering more timely self-
monitoring. However, there is still room to improve participants’ 
overall self-monitoring behavior to be in line with recommenda-
tions from health behavior change literature. More research is 
needed to understand how to fnd the right balance between indi-
vidual diferences (e.g., preferring to log at the end of the day) and 
health guidelines (e.g., recommending to log throughout the day). 
Perhaps an mHealth app could pre-populate a day’s log based on 
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asking the user a few simple questions at the beginning of the day 
or end of the prior day, or other onboard sensors could be used to 
detect mealtimes and meal contents (e.g., photos of meals a user 
is about to eat [48, 82]). Another option is to use newly emerging 
AI tools like large-language models (LLMs) [94] to support partici-
pants throughout the day in a kind of coaching relationship that 
strikes a better balance for the user experience. However, the use of 
AI to support mHealth applications is an emerging feld and comes 
with many questions about participants’ data privacy and issues 
of fairness, accountability, transparency, and ethics (FATE) central 
to human-AI interaction [54], not to mention basic questions of 
accessibility and cost of requiring mobile smartphones with data 
access to use these apps. Furthermore, while weight management 
literature recommends self-monitoring throughout the day, HCI 
research has documented the challenges users encounter in food 
journaling, highlighting the importance of tailoring the journaling 
process to users’ specifc health goals [15]. More research is needed 
at the intersection of mHealth and HCI to address these questions to 
motivate behavior change and eventually improve health outcomes. 

6 LIMITATIONS AND FUTURE WORK 
Our work has several limitations. First, to simulate a practical appli-
cation, we selected weight maintenance as the targeted health goal 
for participants. Although this is a commonly employed scenario, it 
still might not encompass the full spectrum of use cases for mHealth 
apps. Future research should consider extending our fndings to 
other mHealth scenarios to assess the general applicability of our 
results. 

Second, as mentioned in Section 3.7, during the study, two bugs 
in our app implementation caused (a) one notifcation out of 120 
to not be sent for two participants, and (b) one additional weekly 
check-in questionnaire notifcation to be sent to fve participants. 
To address these issues, we normalized the log counts by the actual 
number of notifcations sent to each participant in our data analysis. 
Additionally, it is important to note that we excluded four partic-
ipants from our analysis of click response time because they did 
not click on any notifcations during the second half of the study 
(though they continued logging and otherwise participating in the 
study). 

Third, our population sample exhibited imbalance in terms of 
ethnicity and gender: 63.33% of our participants self-identifed as 
Asian, and 66.67% self-identifed as male. Additionally, our partic-
ipants were recruited from the local community or cities within 
the same time zone. This demographic might not include compre-
hensive cultural or regional diferences that could have an impact 
on app usage and responses to notifcations. Future work should 
consider expanding the population considered in order to under-
stand how these details may have biased our results. In particular, 
weight loss and weight maintenance studies in the clinical health 
literature typically attract more white women than other demo-
graphics [32, 39, 52], so generally speaking replicating this study 
with diferent population groups would be informative. Further-
more, due to our app implementation, we recruited only Samsung 
smartphone users. However, prior work in the health literature 
has shown that there is no diference in mHealth self-monitoring 

impacts on weight loss between Android and iOS phone users [97], 
so our results should still generalize. 

Fourth, we must consider the possible efect of study participa-
tion itself on the frequency of overall self-monitoring behavior. Our 
study was conducted by deploying our app on participants’ own 
phones over a period of one month with only three interactions 
with the research team, to help increase naturalness and validity. 
However, some participants did report that they were logging more 
often initially because they were participating in the study. As time 
progressed, though, many of them told us that this behavior evolved 
into a habit. Interestingly, several participants expressed their inten-
tion to continue logging and self-monitoring after the study ended. 
Others found daily logging to be less benefcial to them and had no 
intention of continuing it after the study concluded. 

Fifth, as we discussed in Section 5.3, relying solely on a smart-
phone for detecting transitions between physical activities may 
not be optimal. During our study, participants told us that they 
occasionally left their phone behind when they moved about or ate 
meals, often for reasons such as charging their phone at their desk. 
Future work could consider integrating wearables such as smart-
watches, potentially improving the ability to detect more accurate 
physical activity transitions for behavioral health intervention. 

Lastly, although our study involves the use of a calorie tracking 
app, we did not include a detailed safety plan to mitigate poten-
tial issues such as promoting disordered eating. It is possible that 
calorie counting can potentially create challenges for certain indi-
viduals, such as feelings of shame or judgment [15]. In our study, 
participants were instructed to focus solely on tracking their health 
data without any emphasis on changing dietary intake, physical 
activity, or weight. Our health experts assessed this approach as 
posing minimal risk of potential harm. Nevertheless, future work 
involving self-monitoring of dietary intake (especially studies aim-
ing to change dietary intake or those that set specifc caloric intake 
goals) should consider including protocols to minimize and manage 
potential risks related to these concerns. 

7 CONCLUSION 
Many mHealth apps for weight maintenance rely on self-monitoring 
as a critical component to empower users to achieve their health 
goals. However, consistent adherence to self-monitoring tends to 
decrease over time. While push notifcations in these apps can in-
crease users’ app engagement, adherence, and long-term retention, 
they are often ignored by users due to appearing at inopportune 
moments. Contextual factors including time of day and physical 
activity transitions have been found to be efective in estimating 
user interruptibility in other domains. Therefore, we conducted a 
within-subjects study in the context of an mHealth app for weight 
loss and weight maintenance, employing notifcation timing as the 
independent variable with two conditions: time-based notifcations 
and context-based notifcations. We integrated insights from the 
interruptibility literature into a weight maintenance app designed 
and developed in collaboration with health experts on our team, 
enabling us to achieve a closer alignment with real-world mHealth 
use cases. The outcomes of our four-week in-the-wild study with 30 
participants suggest that, while notifcation timing had no signif-
cant efect on overall daily self-monitoring behavior, context-based 
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notifcations were efective in triggering faster and more frequent 
responses to the notifcations, as well as in fostering more timely 
self-monitoring behaviors (i.e., as eating/exercise occurs). Our study 
ofers a deeper understanding of how using contextual factors for 
sending notifcations can trigger more timely self-monitoring be-
haviors. Finally, we discuss how our results can inform the future 
design of mHealth apps, and suggest implications for future re-
search on fnding the right balance between real-world individual 
diferences in behavior and optimal health-related guidelines. 
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